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Abstract—The first and efficient total synthesis of (�)-(2R,10S)-megapodiol 2 was accomplished stereoselectively, using a Sharpless
asymmetric epoxidation of a trans allylic alcohol, intramolecular epoxide opening by phenolic hydroxyl, and cyclization as the key
reaction steps.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

(�)-(2R)-Megapodiol1 1 is a 2,3-dihydrobenzofuran iso-
lated from the ground plant Baccharis megapotamica, a
Brazilian shrub of the genus Baccharis that belongs to
the family of Asteraceae. Compound 1 showed high
activity in vivo against P388 leukemia in mice and high
cytotoxicity in vitro against KB cells.2 The structure of
1 has not been reported earlier and the absolute stereo-
chemistry at C-10 was also not known. However the
configuration at C-2 was found to be R by degradation
studies.3 Due to its interesting antileukemic activity and
our interest in the chemistry of chiral 2,3-
dihydrobenzofuran antifungals,4 we were attracted to-
ward its total synthesis. Herein we report the first and
efficient total synthesis of (�)-(2R,10S)-megapodiol
2, thereby establishing its absolute stereochemistry
(Fig. 1).
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2. Results and discussion

The retrosynthesis envisaged for the synthesis of (�)-
(2R,10S)-megapodiol 2 is shown in Scheme 1. The key
step involved in this sequence was the intramolecular
epoxide opening by phenolic hydroxyl4 with simulta-
neous cyclization affording the 2,3-dihydrobenzofuran
moiety. The epoxide 3 was prepared by Sharpless asym-
metric epoxidation5 of trans-allylic alcohol6 4, which
was in turn prepared from 1-methyl-1-vinyloxirane7 6
and p-hydroxyacetophenone 7 in a six-step sequence
involving regiospecific addition8 through a p-allylpalla-
dium complex, acetylation, Claisen rearrangement,8

protection, reduction, and deprotection strategy
(Scheme 1).

Accordingly, the known6 trans allylic alcohol 4 was pre-
pared from p-hydroxyacetophenone, by regiospecific
opening8 by the phenolic hydroxy group of p-hydroxy-
acetophenone to 1-methyl-1-vinyloxirane7 6 through a
p-allylpalladium complex intermediate obtained from
vinyloxirane and Pd(0). The crude reaction product 5
(95%) was then reacted with Ac2O to protect the alco-
holic hydroxyl as an acetoxy group and this gave 8
(98%). By using dry HCl, the latter was transformed8

(Claisen rearrangement) into 9 (98%). Alkylation of 9
with BnBr/K2CO3 in acetone afforded 10 (92%). NaBH4

reduction of the keto compound 10 in methanol gave
alcohol 11 (90%). Reaction of 11 with TBDMSCl and
imidazole, furnished 12 (90%). Further, deprotection
of the acetyl group from 12 with K2CO3, MeOH, and
H2O afforded trans allylic alcohol 4 (97%). The structure
of 4 was unambiguously assigned based on the spectral
and NOE studies (Fig. 2). Introduction of chirality on
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Scheme 1. Retrosynthetic analysis.
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Figure 2. NOE studies on 4.
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ED
the trans-allylic double bond through Sharpless asym-
metric epoxidation (SAE)5 using LL-(+)-DET as the
chiral reagent afforded 3 (86%) with a (�)-(2R,3S)-con-
figuration and 95% de (determined by NMR analysis).
Debenzylation of 3 with H2, Pd/C in MeOH, followed
by cyclization with K2CO3, NEt3 afforded 2,3-
dihydrobenzofuran 14 (70%) rather than the isomeric
3-hydroxychroman.4 (�)-(2R,10S)-Diol 14 on acetyl-
ation with Ac2O, DMAP (cat) and Et3N in CH2Cl2 gave
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Scheme 2. Reagents and conditions : (a) Pd(PPh3)4, CH2Cl2, rt, 4 h; (b) Ac2O, Et3N, DMAP, AcOEt, rt, 4 h; (c) HCl(g), CH2Cl2, rt, 2 min; (d) BnBr,

K2CO3, acetone, reflux, 12 h; (e) NaBH4, MeOH, 0 �C, 2 h; (f) TBDMS–Cl, imidazole, DMAP (cat), CH2Cl2, 0 �C 15 min then rt, 10 h; (g) K2CO3,

MeOH, H2O, rt, 2 h; (h) t-BuOOH, Ti(O-i-Pr)4, LL-(+)-DET, CH2Cl2, �24 �C, 20 h; (i) H2, Pd/C, MeOH, rt, 4 h; (j) K2CO3, NEt3, rt, 4 h; (k) Ac2O,

DMAP (cat), NEt3, CH2Cl2, 0 �C, 15 min then rt, 5 h; (l) Bu4NF, AcOH, THF, rt, 24 h; (m) PCC, NaOAc, Celite, CH2Cl2, 0 �C 15 min then rt, 6 h;

(n) K2CO3, MeOH, H2O, rt, 1 h.
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(�)-(2R,10S)-15 (90%). Deprotection of the (�)-
(2R,10S)-TBDMS group of 15 with Bu4NF and AcOH
in THF afforded (�)-(2R,10S)-alcohol 16 (70%). PCC
oxidation of (�)-(2R,10S)-16 in CH2Cl2 and NaOAc
furnished (�)-(2R,10S)-17 (75%). Removal of the
OAc protecting groups 17 with K2CO3, MeOH, and
H2O afforded (�)-(2R,10S)-2 (80%) (Scheme 2), ½a�25D ¼
�64:1 (c 1.25, MeOH) [lit.1 ½a�25D ¼ �52:0 (c 1.00,
MeOH)] with >99.0% ee (determined by chiral HPLC
analyses),9 the spectroscopic data10 of which were iden-
tical with those of the natural product.
3. Conclusion

In summary we have demonstrated for the first time the
total synthesis of megapodiol in a highly stereoselective
manner using Sharpless asymmetric epoxidation as key
step. Our method involves simple and readily available
reagents, which makes it useful synthetic route for the
total synthesis of megapodiol.
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10. Spectroscopic data: data for compound 2: 1H NMR
(200 MHz, CDCl3): d 1.21 (3H, s, CH3-12), 2.49 (s, 3H,
CH3-14), 3.19 (1H, dd, J = 16.0, 8.0 Hz, CH2-3, HA), 3.27
(1H, dd, J = 16.0, 10.0 Hz, CH2-3, HB), 3.48 (1H, d,
J = 16.0 Hz, CH2OH-11, HD), 3.70 (1H, d, J = 16.0 Hz,
CH2OH-11, HE), 4.85 (1H, m, H-2, HC) 6.73 (1H, d,
J = 10.0 Hz, H-8), 7.68 (1H, dd, J = 10.0, 2.0 Hz, H-7),
7.75 (1H, br s, H-5); 13C NMR (50.3 MHz, CDCl3): 19.9
(CH3-12), 26.7 (CH3-14), 29.9 (C-3), 68.4 (CH2OH-11),
73.1 (C-10), 89.2 (C-2), 109.5 (C-8), 125.6 (C-5), 127.8 (C-
6), 130.3 (C-7), 131.6 (C-4), 163.7 (C-9), 197.8 (C@O).
Anal. Calcd for C13H16O4 (236.10): C, 66.09; H, 6.83.
Found: C, 66.18; H, 6.94. MS: m/z (relative intensity) 236
(M+, 18), 204 (6), 187 (9), 162 (35), 147 (19), 119 (25), 91
(25), 75 (12), 57 (20), and 43 (100). FABHRMS: Calcd
C13H16O4 (M

+) 236.105248. Found: 236.105245.
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