

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 917-919

Tetrahedron: Asymmetry

ely, using a Sharpless

First stereoselective total synthesis of (-)-(2R,10S)-megapodiol

Ramadas Sathunuru* and Jean-Charles Quirion

Laboratoire d' Heterochimie Organique associe' au CNRS, IRCOF, INSA et Universite Rouen, Rue Tesniere 76821 Mont Saint—Aignan cedex, France

Received 22 November 2004; accepted 11 January 2005

Abstract—The first and efficient total synthesis of (-)-(2R,10S)-megapodiol **2** was a asymmetric epoxidation of a *trans* allylic alcohol, intramolecular epoxide opening f reaction steps.

oxide opening y polic hydrox, and cyclization as the key

mplished ste

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

(-)-(2R)-Megapodiol¹ 1 is a 2,3-dihydrobenzofuran i lated from the ground plant *Baccharis megapotamica*, Brazilian shrub of the genus Baccharis that belongs to the family of Asteraceae. Compound 1 sh 1 high activity in vivo against P₃₈₈ leukemia in z ce an high cytotoxicity in vitro against KB cells.² the struct 1 has not been reported earlier and the boolu re of chemistry at C-10 was also not own. wever the configuration at C-2 was found to be R by a studies.³ Due to its interesting and takenic act radation ty and our interest in the chemistry of chiral 2,3dihydrobenzofuran antie ngals,⁴ we were attracted to-ward its total synthesis. Herein we report the first and efficient total synthesis of (-)-(2R,10S)-megapodiol 2, thereby establishing is absolute stereochemistry (Fig. 1).

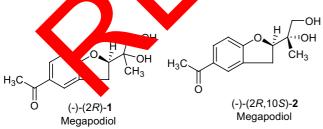


Figure 1.

0957-4166/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.01.011

Results and discussion

sele

The reconstruction protocol **2** is shown in Scheme 1. The key dependence of this sequence was the intramolecular epoxide opening by phenolic hydroxyl⁴ with simultaneous cyclization affording the 2,3-dihydrobenzofuran moiety. The epoxide **3** was prepared by Sharpless asymmetric epoxidation⁵ of *trans*-allylic alcohol⁶ **4**, which was in turn prepared from 1-methyl-1-vinyloxirane⁷ **6** and *p*-hydroxyacetophenone **7** in a six-step sequence involving regiospecific addition⁸ through a π -allylpalladium complex, acetylation, Claisen rearrangement,⁸ protection, reduction, and deprotection strategy (Scheme 1).

Accordingly, the known⁶ trans allylic alcohol 4 was prepared from *p*-hydroxyacetophenone, by regiospecific opening⁸ by the phenolic hydroxy group of *p*-hydroxyacetophenone to 1-methyl-1-vinyloxirane⁷ 6 through a π -allylpalladium complex intermediate obtained from vinyloxirane and Pd(0). The crude reaction product 5 (95%) was then reacted with Ac₂O to protect the alcoholic hydroxyl as an acetoxy group and this gave 8 (98%). By using dry HCl, the latter was transformed⁸ (Claisen rearrangement) into 9 (98%). Alkylation of 9 with BnBr/K₂CO₃ in acetone afforded 10 (92%). NaBH₄ reduction of the keto compound 10 in methanol gave alcohol 11 (90%). Reaction of 11 with TBDMSCl and imidazole, furnished 12 (90%). Further, deprotection of the acetyl group from 12 with K_2CO_3 , MeOH, and H₂O afforded *trans* allylic alcohol **4** (97%). The structure of 4 was unambiguously assigned based on the spectral and NOE studies (Fig. 2). Introduction of chirality on

^{*} Corresponding author at present address: Department of Chemistry, Southern Methodist University, Fondern Science Bldg, 3215 Daniel Avenue, Dallas, TX 75275, USA. Tel.: +1 214 768 2735; fax: +1 214 768 4089; e-mail: rsathunu@mail.smu.edu

Scheme 2. Reagents and conditions : (a) Pd(PPh₃)₄, CH₂Cl₂, rt, 4 h; (b) Ac₂O, Et₃N, DMAP, AcOEt, rt, 4 h; (c) HCl(g), CH₂Cl₂, rt, 2 min; (d) BnBr, K₂CO₃, acetone, reflux, 12 h; (e) NaBH₄, MeOH, 0 °C, 2 h; (f) TBDMS–Cl, imidazole, DMAP (cat), CH₂Cl₂, 0 °C 15 min then rt, 10 h; (g) K₂CO₃, MeOH, H₂O, rt, 2 h; (h) *t*-BuOOH, Ti(O-*i*-Pr)₄, L-(+)-DET, CH₂Cl₂, -24 °C, 20 h; (i) H₂, Pd/C, MeOH, rt, 4 h; (j) K₂CO₃, NEt₃, rt, 4 h; (k) Ac₂O, DMAP (cat), NEt₃, CH₂Cl₂, 0 °C 15 min then rt, 5 h; (l) Bu₄NF, AcOH, THF, rt, 24 h; (m) PCC, NaOAc, Celite, CH₂Cl₂, 0 °C 15 min then rt, 6 h; (n) K₂CO₃, MeOH, H₂O, rt, 1 h.

(-)-(2*R*,10*S*)-**15** (90%). Deprotection of the (-)-(2*R*,10*S*)-TBDMS group of **15** with Bu₄NF and AcOH in THF afforded (-)-(2*R*,10*S*)-alcohol **16** (70%). PCC oxidation of (-)-(2*R*,10*S*)-**16** in CH₂Cl₂ and NaOAc furnished (-)-(2*R*,10*S*)-**17** (75%). Removal of the OAc protecting groups **17** with K₂CO₃, MeOH, and H₂O afforded (-)-(2*R*,10*S*)-**2** (80%) (Scheme 2), $[\alpha]_D^{25} =$ -64.1 (*c* 1.25, MeOH) [lit.¹ $[\alpha]_D^{25} =$ -52.0 (*c* 1.00, MeOH)] with >99.0% ee (determined by chiral HPLC analyses),⁹ the spectroscopic data¹⁰ of which were identical with those of the natural product.

3. Conclusion

In summary we have demonstrated for the first time the total synthesis of megapodiol in a highly stereoselective manner using Sharpless asymmetric epoxidation as key step. Our method involves simple and readily available reagents, which makes it useful synthetic route for the total synthesis of megapodiol.

References

- 1. Jarvis, B. B.; Pena, N. B.; Comezoglu, S. N.; Rao, M. M. *Phytochemistry* **1986**, *25*, 533.
- Jarvis, B. B.; Comezoglu, S. N.; Rao, M. M.; Pena, N. B. J. Org. Chem. 1997, 52, 45.
- Bonner, W. A.; Burke, N. I.; Fleck, W. E.; Hill, R. K. Joule, J. A.; Sjoberg, B.; Zalkow, J. H. *Tetrahedron* 1964 20, 1419.
- 4. Ramadas, S.; Krupadanam, G. L. Tetraher on: A primetry 2000, 11, 3375.

- (a) Finn, M. G.; Sharpless, K. B. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1985; Vol. 5, p 247; (b) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974; (c) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765; (d) Rossiter, B. E. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1985; Vol. 5, p 193; (e) Pfenniger, A. Synthesis 1986, 89.
- 6. Goujon, J. Y.; Duval, A.; Kirschleger, B. J. Chem. Soc., Perkin Trans. 1 2002, 496.
- 7. Coulonge, J.; Descotes, G.; Bahurd *Stand, Soc. Chim.* Fr. **1965**, *3*, 619.
- Marquard, I. Eur. Patent Appl. 183, 042 (Perfman, F.; La Roche; Co, A.-G.) Co. Abstr. 196, 105, 172047^y.
- The enantiomeric excessive) of (-)-0.210S)-10-15, -16, -17, and -2 were determined by chira HU aC analyses using a Chiracel of Column and Caracel OJ column (25×0.46cm, Daice Japan) eluent: hexane-i-PrOH).
- data: data for c pound 2: ¹H NMR 10. Spectrosco 3): δ 1.21 (1.9, CH₃-12), 2.49 (s, 3H, dd, J = 16.9, 8.0 Hz, CH₂-3, H_A), 3.27 $(1_3): \delta 1.21$ (200 MH CH₃-14, 3.19 ($(1H, dd, J = 16.0, 10.0 \text{ Hz}, CH_2-3, H_B), 3.48 (1H, d,$ Hz, CH_2OH_1 , H_D), 3.70 (1H, d, J = 16.0 Hz, CH₂OH-11, H_E), 4.85 (1H, m, H-2, H_C) 6.73 (1H, d, J = 10.0 Hz, H-8), 7.68 (1H, dd, J = 10.0, 2.0 Hz, H-7), 7.75 (1H, br) H-5); ¹³C NMR (50.3 MHz, CDCl₃): 19.9 CH₃-12), 26 (CH₃-14), 29.9 (C-3), 68.4 (CH₂OH-11), (C-10) 9.2 (C-2), 109.5 (C-8), 125.6 (C-5), 127.8 (C-(C-7), 131.6 (C-4), 163.7 (C-9), 197.8 (C=O). 6). Anal. Calcd for $C_{13}H_{16}O_4$ (236.10): C, 66.09; H, 6.83. rd: C, 66.18; H, 6.94. MS: m/z (relative intensity) 236 (M^{*}, 18), 204 (6), 187 (9), 162 (35), 147 (19), 119 (25), 91 (25), 75 (12), 57 (20), and 43 (100). FABHRMS: Calcd

C₁₃H₁₆O₄ (M⁺) 236.105248. Found: 236.105245.